Carbon capture—dream or nightmare—could be coming. Or not.

Jay OwenGreentech

By Jon Gertner | August 30, 2021

Collector containers onsite in Iceland. Image courtesy Climeworks

 

Editor’s note: This story was originally published by Yale e360. It appears here as part of the Climate Desk collaboration.

In early September, at an industrial facility located about 25 miles southeast of Reykjavik, Iceland, the Swiss company Climeworks will mark the opening of a new project named “Orca.”

At least in a conventional sense, Orca doesn’t actually make anything. It is comprised of eight elongated boxes that resemble wood-clad tanks. Each of these boxes—known as “collectors”—is roughly the size of a tractor trailer, and each is festooned with 12 whirring fans that draw a stream of air inside. Within the collectors, a chemical agent known as a sorbent will capture carbon dioxide contained in the air wafting through. Periodically, the surface of the sorbent will fill up. And at that point the carbon dioxide trapped within it will need to be released. At Orca, this task is accomplished with a blast of heat, which is sourced from a nearby hydrothermal vent. The extracted carbon dioxide will then be piped from the collector boxes to a nearby processing facility, where it will be mixed with water and diverted to a deep underground well.

And there it will rest. Underground. Forever, presumably. The carbon dioxide captured from the Icelandic air will react with basalt rocks and begin a process of mineralization that takes several years, but it will never function as a heat-trapping atmospheric gas again.

Climeworks maintains that Orca, once it’s running around the clock, will remove up to 4,000 metric tons of carbon dioxide from the atmosphere each year. And there isn’t much reason to doubt the facility can achieve this feat. For one thing, the technology for the plant, known as direct air capture, or DAC, is a variation on ideas that have been utilized over the course of half a century in submarines and spacecraft: Employ chemical agents to “scrub” the excess carbon dioxide out of the air; dispose of it; then repeat. More to the point, perhaps, is the fact that Climeworks has already built smaller, less sophisticated plants in mainland Europe, which have in turn pulled hundreds of tons of carbon dioxide per year from ambient air.

What seems most significant about Orca, then, is how it represents the possibility that direct air capture has moved closer to something resembling a commercial business. Climeworks now has dozens of customers—individual consumers who have purchased carbon removal services directly from the company, as well as corporations, like the insurance giant Swiss Re—who will pay for the permanent carbon offsets that will be buried underneath Icelandic soil. What’s more, the Orca facility will be the largest functioning direct air capture plant in the world to date—by the company’s estimation, it represents a “scale-up” of its carbon removal efforts by about eighty-fold over the course of four years.

And yet, Climeworks and Orca will likely soon be eclipsed. Plans for even larger DAC plants—one in the US Southwest, slated for completion at the end of 2024; another in Scotland, to be finished about a year after the American project—will be built by a competitor, Carbon Engineering, of British Columbia. Employing a somewhat different technology, Carbon Engineering’s facilities, as initially planned, will be powered by renewable energy and will eventually each remove, on net, about a million metric tons of carbon dioxide a year from the atmosphere.

 

Continue Reading