lft-arrow

Saturday November 29th 2014

40 years of foresight, insight and integrity

rght-arrow

Archives

Subscribe

Get news updates
via email:

Delivered by FeedBurner

Speed Installation of System to Monitor Vital Signs of Global Ocean, Scientists Urge

Sunday 31 October, 2010

As oceans grow saltier, hotter, more acidic and less diverse biologically, world governments urgently need to help complete a full global ocean observing system, the value of which to society would dwarf the investment required, according to scientists with the Partnership for Observation of Global Oceans (POGO), a consortium of 38 major oceanographic institutions spanning 21 countries.

Origins of the recent $9.5 billion flood in Pakistan and the human and agricultural disaster caused by this summer’s heat wave and forest fires in Russia represent two recent world catastrophes traceable to the oceans. Integrated, continuous and systematic monitoring of physical, chemical and marine life changes in the seas would yield invaluable warnings of these and other types of disasters and mitigate their harm to human security and commerce, the scientists say.

Advance interviews are available with POGO scientists in all world regions.
POGO officials will take part in meetings of the Group on Earth Observations (GEO-VII), Beijing, 3-4 Nov., followed by a government ministerial summit 5 Nov.

For high-res images, please see links below.

With thanks and best wishes,

Mr. Terry Collins,
+1-416-538-8712; +1-416-878-8712
[email protected]
News release
Partnership for Observation of the Global Oceans

www.ocean-partners.org

Speed Installation of System to Monitor Vital Signs of Global Ocean, Scientists Urge

“It is past time to get serious about measuring what’s happening to the seas around us”

The ocean surface is 30 percent more acidic today than it was in 1800, much of that increase occurring in the last 50 years – a rising trend that could both harm coral reefs and profoundly impact tiny shelled plankton at the base of the ocean food web, scientists warn.

Despite the seriousness of such changes to the ocean, however, the world has yet to deploy a complete suite of available tools to monitor rising acidification and other ocean conditions that have a fundamental impact on life throughout the planet.

Marine life patterns, water temperature, sea level, and polar ice cover join acidity and other variables in a list of ocean characteristics that can and should be tracked continuously through the expanded deployment of existing technologies in a permanent, integrated global monitoring system, scientists say.

The Partnership for Observation of the Global Oceans (POGO), representing 38 major oceanographic institutions from 21 countries and leading a global consortium called Oceans United, will urge government officials and ministers meeting in Beijing Nov. 3-5 to help complete an integrated global ocean observation system by target date 2015. It would be the marine component of a Global Earth Observation System of Systems under discussion in Beijing by some 71 member nations of the intergovernmental Group on Earth Observations.

The cost to create an adequate monitoring system has been estimated at $10 billion to $15 billion in assets, with $5 billion in annual operating costs.

Some 600 scientists with expertise in all facets of the oceans developed an authoritative vision of characteristics to monitor at a 2009 conference on ocean observations, (www.oceanobs09.net).

Furthermore, as documented in the forthcoming proceedings of the 2009 conference (to be published shortly by the European Space Agency), the value of such information to the world’s financial interests and to human security would dwarf the investment required.

“Although the US and European Union governments have recently signaled support, international cooperation is desperately needed to complete a global ocean observation system that could continuously collect, synthesize and interpret data critical to a wide variety of human needs,” says Dr. Kiyoshi Suyehiro, Chairman of POGO.

“Most ocean experts believe the future ocean will be saltier, hotter, more acidic, and less diverse,” states Jesse Ausubel, a founder of POGO and of the recently completed Census of Marine Life. “It is past time to get serious about measuring what’s happening to the seas around us.”

The risks posed by ocean acidification exemplify the many good reasons to act urgently.

POGO-affiliated scientists at the UK-based Sir Alister Hardy Foundation for Ocean Science recently published a world atlas charting the distribution of the subset of plankton species that grow shells at some point in their life cycles. Not only are these shelled plankton fundamental to the ocean’s food web, they also play a major role in planetary climate regulation and oxygen production. Highly acidic sea water inhibits the growth of plankton shells.

The Foundation says the average level of pH at the ocean surface has dropped from 8.2 to 8.1 units, “rendering the oceans more acidic than they have been for 20 million years,” with expectations of continuing acidification due to high concentrations of carbon dioxide in the atmosphere.

Because colder water retains more carbon dioxide, the acidity of surface waters may increase fastest at Earth’s high latitudes where the zooplankton known as pteropods are particularly abundant. Pteropods (see links to images below) are colorful, free-swimming pelagic sea snails and sea slugs on which many animals higher in the food chain depend. Scientists caution that the overall global marine impact of rising carbon dioxide is unclear because warming of the oceans associated with rising greenhouse gases in the air could in turn lead to lower retention of carbon dioxide and to potential countervailing effects.

Says Foundation Director Dr. Peter Burkill: “Ocean acidification could have a devastating effect on calcifying organisms, and perhaps marine ecosystems as a whole, and we need global monitoring to provide timely information on trends and fluxes from the tropics to the poles. Threatened are tiny life forms that help the oceans absorb an estimated 50 gigatonnes of carbon from Earth’s atmosphere annually, about the same as all plants and trees on land. Humanity has a vital interest in authoritative information about ocean conditions and a global network of observations is urgently needed.”

Ocean conditions that require monitoring can be divided into three categories:

Chemical – including pollution, levels of oxygen, and rising acidity;

Physical / Geological – including sound, tide and sea levels, as well as sudden wave energy and bottom pressure changes that could provide precious minutes of warning before a tsunami; and

Biological – including shifts in marine species diversity, distribution, biomass and ecosystem function due to changing water conditions.

Benefits of the comprehensive ocean system envisioned include:

· Improved short-term and seasonal forecasts to mitigate the harm caused by drought, or by severe storms, cyclones, hurricanes and monsoons, such as those that recently put one-fifth of Pakistan temporarily underwater and left 21 million people homeless or injured. International lenders estimate the damage to Pakistan’s infrastructure, agriculture and other sectors at $9.5 billion. Improved weather forecasting would also enhance the safety of the fishing and shipping industries, and offshore operations such as wind farms and oil drilling. Sea surface temperature is a key factor in the intensity and location of severe weather events;

· Early identification of pollution-induced eutrophication that spawns algal blooms responsible for health problems in humans and marine species, and harm to aquaculture operations;

· Timely alerts of changes in distributions of marine life that would allow identification of areas needing protective commercial re-zoning, and of immigration by invasive species;

· Minimized biodiversity loss on coral reefs, the importance of which, for species diversity, is comparable to that of the planet’s rainforests.

Says Dr. Suyehiro: “What happens in the world’s oceans profoundly affects the success of life throughout the Earth. We now have remarkable and proven ground-based, ocean-drifting, air-borne and space-based technologies to measure and report changing ocean conditions quickly, often in real-time. The right kind of data streams from the ocean will help us forecast regime shifts in weather patterns over continents and their consequences for agriculture, fisheries, tourism and other sectors. The value of the knowledge within our reach – to human health, security and commerce – is overwhelmingly large relative to its cost.”

“The situation of scientists today is akin to that of a doctor schooled in the range of technologies that could record a patient’s vital signs, sound an alarm when required, and suggest remedial options – if only we would make the investment.”

Says Tony Knap, Director of the Bermuda Institute of Ocean Sciences and a leader of POGO: “The top three meters of the oceans hold as much heat as Earth’s atmosphere and changes in marine conditions are felt on land in profound ways. To obtain clear warning of weather-related disasters, we need to monitor oceans in an integrated, continuous and systematic manner. It will not be cheap, but it has to be done.”

Elements of the ocean monitoring system in place today include:

Chemical

* A scientific instrument with a suite of environmental sensors, recently deployed at Australia’s Heron Island to observe changes in the acidity of waters covering the Great Barrier Reef, among other data gathered. The instrumentation also includes carbon dioxide sensors developed with the long-term aim of building a global network of carbon dioxide observations at sea. The Heron Island site is the newest in a growing network of 25 moorings through the Pacific and Atlantic valued at about $20 million. Other moorings are planned for the Great Barrier Reef and the Australian coast in the next year as part of the nation’s Integrated Marine Observing System.

Physical

* Underwater cabled observatories: long lines of cable on the seabed dotted with nodes of instruments relaying insights into underwater volcanic eruptions and earthquakes that can cause tsunamis.
Installed by Japan at a cost of roughly $100 million, the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET / www.jamstec.go.jp/jamstec-e/maritec/donet), coupled with a national warning system, can avoid an estimated 7,500 to 10,000 (of 25,000) fatalities and about $10 billion (of $100 billion) in estimated economic losses if and when another major (M8) earthquake occurs in the waters off central Japan.
The recently completed North-East Pacific Time-Series Underwater Networked Experiments cabled observatory system (NEPTUNE / www.neptunecanada.ca) off Canada’s west coast will take continuous measurements on the seafloor, equipped with such gadgets as a Doppler ocean current profiler, multi-beam SONAR to reveal masses of life in the water, microbial life samplers, sediment traps, plankton recorders, hydrophones and high resolution video and still cameras.

* A robotic navy of some 3,000 small, drifting “Argo” probes (www.ARGO.net), deployed at a cost of $15 million per year to measure pressure, salinity and temperature at depths down to 2 km and return to the surface every 10 days to transmit readings via satellite. POGO officials say up to 10 times as many floats are needed to produce a high-resolution global picture of shifting marine conditions, incorporating biological and optical measurements;

* Three Equatorial moored buoys, each valued at $5 million, to measure temperature, currents, waves and winds, salinity and carbon dioxide.

* Some 60 globally-distributed reference stations (www.oceansites.org), each valued at $1 million, measuring the oceans’ physical, chemical and biogeochemical properties throughout the water column;

* Deep Ocean Assessment and Reporting of Tsunamis (DART / www.ndbc.noaa.gov/dart/dart.shtml) stations, each operated at a cost of $500,000 per year, consisting of a surface buoy and a seafloor bottom pressure recorder that both reports water temperature and detects tsunamis. When a potential tsunami is detected, the buoy reports measurements every 15 seconds for several minutes, followed by 1-minute averages for 4 hours. The US array, completed in 2008, totals 39 stations in the Pacific Ocean, Atlantic Ocean, and Caribbean Sea. Australia, Chile, Indonesia, India and Thailand have also deployed tsunami warning systems.

Biological

* An expanding global Ocean Tracking Network (http://oceantrackingnetwork.org), currently valued at $150 million, which allows scientists to follow the migrations of tagged salmon and other animals.

* Thousands of pelagic “animal oceanographers” spanning 50 species — elephant seals, tunas, white sharks, leatherback turtles, squid and others — equipped with electronic tags that record the light, depth, temperature and salinity conditions they pass through, while revealing their speed, heart rate, biodiversity hotspots, nurseries, and migratory routes that need protection (www.topp.org);

* At-sea DNA sequencing of microbial, bacterial, and planktonic life forms, yielding real-time marine equivalents of “pollen counts”;

* The Continuous Plankton Recorder Survey (www.sahfos.ac.uk), which has been monitoring the Atlantic for almost 80 years. At a current cost of $6 million per year, the survey recently extended into the Arctic and Pacific, with plans underway to monitor plankton worldwide;

*A growing network, NaGISA (www.nagisa.coml.org), of more than 200 sites around the world using standardized protocols to measure near-shore biodiversity and changes that climate and pollution could cause.

To embrace the challenge of monitoring ocean life, world experts are formally puzzling through a recommended installation sequence; in other words, what, where and how many “life gauges” are top priorities in the proposed system.

Moving forward

The parts of the system now installed represent only a fraction of what’s required for authoritative accuracy and global perspective, according to POGO. Needed are expansion of the array of the technologies above as well as:

· So-called ‘air-clippers': atmosphere and ocean surface sensors tethered to balloons with which scientists have achieved concurrent atmospheric and ocean measurements from within the eye of a strong cyclone where the balloons become trapped;

* A suite of novel “Autonomous Reef Monitoring Structures,” valued at $50 million — dollhouse-like structures into which animals migrate for collection and analysis later. The ARMS devices allow for standardized global comparisons and monitoring of reef life and benthic biodiversity;

* A Chlorophyll Globally-Integrated Network (ChloroGIN / www.chlorogin.org), which aims to monitor the coastal ecosystem using in situ and satellite techniques, at a cost of $5 million per year.

· Merchant marine and research vessels programs to make observations along their routes. The cost of instituting the global programs is estimated at, respectively, $50 million and $75 million per year.

The in situ observations would complement a suite of satellite-borne devices tracking sea-surface roughness, temperature, currents, ice cover and shifting distributions of marine plants. Satellites provide wide aerial coverage, but provide little information from deep within the ocean; hence the need for both types of observations.

Quotable quotes

Mr. Jesse Ausubel, Vice-President of the Alfred P. Sloan Foundation, USA: “Since our 2007 meeting with the Group on Earth Observations in Cape Town, the world’s tsunami warning system has expanded dramatically, scientists have invented and successfully tested the first coral reef biodiversity monitoring devices, and 25 devices to monitor ocean surface acidity have been installed. We have tested and demonstrated the value and capabilities of dozens of observation technologies and their interoperability. In the 1970s, national weather services created a global system to monitor the atmosphere. While monitoring the ocean is harder than the atmosphere, the GEO 2010 Summit can earn a place in history as the time when nations truly committed to a global ocean observing system.”

Dr. Trevor Platt, Executive Director of POGO; Plymouth Marine Laboratory, UK: “We rely on the oceans for transportation, protein, pharmaceuticals, minerals and hydrocarbons. But we do not know nearly enough about how the oceans are changing. The world’s coastal fringes, where 40 percent of humanity resides, suffer increasingly costly storms and flooding. Without the proper information, we are powerless to anticipate and prepare for what may come in the future. Our best defense is an observing network for the global ocean to warn of trouble.”

Dr. Shubha Satheyendranath, Assistant Director of POGO: “The Gulf of Mexico oil spill showed the inadequacy of ocean observation systems today, even in highly-developed countries. Coastal installations that had fallen into disuse had to be quickly repaired or replaced, and university laboratories were called in to improvise underwater measurement programs. Secure funding is needed to create and maintain a proper ocean observing system supported by cutting-edge research.”

Dr. Sophie Seeyave, Scientific Co-ordinator of POGO: “The Southern Ocean swirling around Antarctica acts like a planetary cauldron, linking Earth’s ocean basins and the life in them. Any change in the Southern Ocean will have global ramifications but it is still largely unmonitored. POGO has helped plan a Southern Ocean Observing System that will speed inclusion of this large, neglected ring of ocean.

* * * * *

POGO
The Partnership for Observation of the Global Ocean (POGO) links about 80% of the world’s institutions studying the oceans. POGO was created by directors and leaders of major oceanographic institutions to focus attention on technical compatibility among observing networks; shared use of infrastructure; and on public outreach and capacity building.

Recent progress to which POGO and Oceans United contributed includes creation of the GEO Biodiversity Network (GEOBON), which is starting to coordinate sustained, cross-cutting, integrated and accessible biodiversity data and information. Many of the ideas for monitoring biodiversity have recently been demonstrated by the Census of Marine Life research program, in which POGO has been a partner.

With the support of the Nippon Foundation, the POGO Centre of Excellence in Ocean Observations opened three years ago, hosted by the Bermuda Institute of Ocean Sciences. The Centre receives 10 scholars from developing countries for 10 months each year, and teaches them about the theory, methods and interpretation of ocean observations. This is part of the continuing effort of POGO to enhance capacity in developing countries to monitor regional oceans and to provide information on ocean issues to policy makers.

OCEANS UNITED
Oceans United – “The Voice of the Oceans” – is an international forum created under POGO leadership that brings together many organizations with interests in various aspects of ocean observations, and speaks with a common voice in support of ocean observations.

Global Ocean Observing System (GOOS)
GOOS is co-ordinated by the Intergovernmental Oceanographic Commission, World Meteorological Organization, the UN Environment Programme and the International Council for Science. It is being implemented by concerned partners worldwide.

Images:

Please see an illustrated version of this news release at
http://dl.dropbox.com/u/3960397/FINAL%20POGO.doc

Depiction of marine life observation technologies:
Scientists explore on and beneath polar ice. Their aircraft remotely sense animals through properties of scattered light. Marine animals themselves carry tags that store records of their travels and dives and communicate with satellites. Fish carry tags that revealed their migration past acoustic listening lines. Sounds that echoed back to ships portray schools of fish assembling, swimming, and commuting up and down. Standardized frames and structures dropped near shores and on reefs provide information for comparing diversity and abundance. Manned and unmanned undersea vehicles plus divers photograph sea floors and cliffs. Deep submersibles sniff and videotape smoking seafloor vents. And nets and dredges catch specimens, shallow and deep, for closest study.
Image by E. Paul Oberlander.
Download at
http://dl.dropbox.com/u/3960397/OAWRS.final.jpg

A mooring with a suite of ocean acidification and other environmental sensors at Heron Island on the Great Barrier Reef, the latest tool in an expanding global network of ocean measurements, informing scientists of changes in ocean chemistry.
Photo credit: Dr. Bronte Tilbrook, CSIRO, Australia
Download at
http://dl.dropbox.com/u/3960397/Heron%20Mooring.JPG
and
http://dl.dropbox.com/u/3960397/Heron%20mooring%202.JPG

Bottom sediment profiler hauled aboard RV Polarstern during Weddell Sea monitoring. Photo credit: Victoria Wadley, Census of Antarctic Marine Life. Download at http://dl.dropbox.com/u/3960397/Bottom%20sediment%20profiler.jpg

Temperature / depth equipment hauled aboard RV Polarstern during Weddell Sea monitoring.
Photo credit: Victoria Wadley, Census of Antarctic Marine Life. Download at http://dl.dropbox.com/u/3960397/Conductivity%20Temperature%20Depth%20rosette%2C%20RV%20Polarstern.jpg

Pteropod zooplankton collected aboard the R/V Dana, West Greenland, June 2010, Sea-butterflies or pteropods are pelagic snails that swim through the water and catch food on sticky mucus webs and parachutes. The species Limacina retroversa is most abundant in the sub-arctic Atlantic, and adjoining parts of the Arctic proper.

The shells of pteropods are delicate and some species look much like other snails, except for one key difference: the shell spirals in the opposite direction.
Photo credit: Russ Hopcroft – University of Alaska Fairbanks & CoML
Download both images and others in high-res at:
www.arcodiv.org/unlinked/hidden%20stuff/WestGreenland.html

For additional high-res images: www.ocean-partners.org/restricted-photo-gallery?album=1762

Appendix:

Atlas of Calcifying Plankton

Download at

http://dl.dropbox.com/u/3960397/EPOCA%20atlas%202010.pdf

Copyrightt © 2014 EthicalMarkets.com | Supporting the emergence of a sustainable, green, ethical and a just economy worldwide